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: Abstract

The linear stability of circular Couette flow between concentric infinite cylinders
is considered for the case that the stationary outer cylinder is a cryst_-melt interface
rather than a rigid surface. A radial temperature difference is maintained across the
liquid gap, and equations for heat transport in the crystal and melt phases are included

to extend _he ordinary formulation of this problem. The stability of this two-phase
system depends on the Prandtl number. For small Prandtl number the linear stability
of the two-phase system is given by the classical results for a rigid-walled system. For
increasing values of the Prandtl number, convective hen _transport becomes significant
and the system becomes increasingly less stable. Previous results in a uarrow-gap

approximation are extended to the case of a finite gap, and both axisymmetric and
non-axisymmetric disturbance modes are considered. The two-phase system becomes
less stable as the finite gap tends to the narrow-gap limit. The two-phase system
is more stable to non-axisymmetric modes with azimuthal wavenumber n = 1; the
stability of these n = 1 modes is sensitive to the latent heat of fusion.
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1. Introduction

For crystal growth from the melt, the quality of crystal produced depends strongly on the

shape of the crystal-melt interface during the growth and on the transport of heat and

mass to the interface from the nearby fluid. In particular, instabilities of the interface [1]

and hydrodynamic instabilities [2] can promote undesirable inhomogeneities in the growing

crystal. Considerable effort goes into the modelling of crystal growth techniques in order to

understand and control the process. Since the theoretical problem involves heat and mass

transfer via nonlinear convection-diffusion equations in complex geometries, coupled with the

free boundary representing the crystal-melt interface, many studies have considered simple

geometries for which there are closed-form solutions of the Navier-Stokes ¢'quations.

A crystal-melt interface bounding a thermally-supercooled [3]or "constitutionally-supercooled"

[4] fluid is subject to morphological instability [5], and one line of inquiry is to examine the i

effect of various types of flow on this interracial instabihty [6]. For example, the effect of

plane Couette flow [7, 81, rotating disk flow [9], plane stagnation flow [10, 11], thermosolu-

tal convection [12, 13, 14], and the asymptotic suction profile [15], on the instability of a

constitutionally-supercooled interface have been investigated. Another possibility is to ex-

amine the characteristics of classical hydrodynamic instabilities when a bounding surface is
r

, a crystal-melt interface rather than a rigid wall. Such instabilities as Benard convection [16],

' double-diffusive convection [12, 17, 18], PoiseuiUe flow [19], the asymptotic suction profile

[15], and thermal and shear instabilities in buoyant flow due to lateral heating [19, 20, 21]

have all been examined in this light. In general, the problem of predicting the extent of

the coupled interaction between the crystal-melt interface and the flow field is not well..

understood.

In 1923 G.I. Taylor considered the stability of the steady Couette flow between rotating

cylinders and discovered a transition to steady axisymmetric toroidal rolls ("Taylor vor-

tices"), obtaining agreement between the measured val " of the critical rotation rates and

his theoretical predictions [23, 24]. If there is a radial temperature difference across the

cylindrical gap, the transport of heat is altered by the formation of Taylor vortices, since

--2--
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convective heat transport then augments the radial diffusive transport. If one of the bound-

aries is a crystal-melt interface, this change in heat transport can modify the interface shape,

More importantly, this change in morphology can alter the conditions for the onset of the

Taylor-vortex flow.

In a previous paper we considered the effect of a crystal-melt interface on the Taylor-

vortex flow in the narrow-gap approximation [22]. In this note we extend the inv_tigat_on

to include the effects of a finite gap width and non-axisymmetric disturbances.

2. Theory

The geometry is shown in Fig. 1; we consider the linear stability of a.n idealized system with

infinite aspect ratio (-c¢ < z < c¢ in cylindrical variables). The crystal-melt interface is

located at r = h(z, ¢, t), where in the unperturbed base state h(z, ¢, t) -= R2 is constant, t

The heated inner cylinder of radius Rl rotates at angular velocity ill, setting up a base state

consisting of a circular Couette flow in the annular melt occupying the region R1 < r < R2.

The melt is bounded on the outside by a stationary annulus of crystal occupying the region

R2 < r < R2 + Ls. Both the heated inner cylinder at r = R1 and the cooling bath at

r = R2 + Ls are each assumed to be isothermal, as is the crystal-melt interface, which is at

* the equilibrium melting temperature. The densities of the melt and crystal are assumed to

be the same, and the radial temperature difference across the melt is assumed to be small

enough that any buoyancy effects i25] can be neglected.

For details we refer to Ref. [22]. Briefly, the nonlinear governing equations are the

incompressible Navier-Stokes equations for the velocity, u, and the pressure, p, in the melt

region RI < r < h(z, ¢, t),

V. u = 0, (in)

Ot + (u. V}u -4-1Vp = vV2tt, (lb)P

and the convection-diffusion equation for the temperature in the melt, T,

OT

0"t" + (u. V)T = _V_T, (2)

3
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and the diffusion equation for the temperature in the crystal, Ts,

OTs = asV2Ts" (3)Ot

Here p is the density, u is the kinematic viscosity, and a and t¢s are the thermal diffusivities

of the melt and crystal, respectively. At the crystal-melt interface r = h(z, ¢, t) and the

inner cylinder r = RI the flow satisfies no slip and no normal flow, u = 0. The temperatures

are specified at the inner cylinder and the outer edge of the crystal. The thermal boundary

conditions at the interface are

k OT Ors
"_n - ks 0-"£"= -Lvv, (4a)

T = Ts = T_ + T,_FK, (4b)

where O/On is :le normal derivative, k and ks are the thermal conductivities of the liquid

and crystal, respt "tively, T,,, is the bulk melting point of the crystal, Lv is the latent heat

of fusion per unit volume of crystal, vn is the normal velocity of the interface, and F is a

capillary length. Eq. (4a) expresses the conservation of energy: the latent heat released by

the phase transition is conducted into the crystal and melt. Eq. (4b) is the Gibbs-Thomson

equation which relates the interface temperature _o the mean curvature of the interface, K.

We consider the stability of the one-dimensional base state given by h(z, ¢, t) = R2,

u = w = 0, v = V(°)(r), p = p(°)(r), T = T(°)(r), and Ts = T(°)(r), where u, v, and w are

the radial, azimuthal, and axial velocity components, respectively,

(RI/ 2 - 1)
v(°)(r)= m, (Rl/n :-if) (5)

F log(r/R2)

T(°)(r) = T,,, + T,,,_-_2+ AT (6)log( Rl / R2 ) '

and

I' (k) log(r/R2)Ts(°)(r) = T,,, + T,,_-_ + _ AT ; (7)log(Rl/R2)

the base pressure gradient balances the centripetal acceleration term p(V(°))2/r.

--4-"
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To determine the linear stability of the base state, we assume the dependence of the

perturbed quantities takes the form f(r) exp(_rt + in¢ + iaz), and write

¢

u I 0 _(r)
I v(°)(_) o(_)

w 0 _(r)

p = p(°)(r) + /_(r) exp(at + in¢ + iaz), (8)

T TI°)(r) T(r)

Ts T(°) (r ) _'s( r )

h R2k

where the small quantities t2, _3,tb,/_, _', 7_s and $ are complex. The exponential growth

rate a is complex as well, and the base state is linearly stable if _r,, the real part of _r, is _[,

lnegative for all wavenumbers a and n. A marginal disturbance (at = O) is stationary if ai,

the imaginary part of a, vanishes.

The equations and boundary conditions are linearized about the base state and the

resulting eigenvalue problem describing the linear stability of the system is solved numerically

using the same approach d_cribed in [22]. The dimensionless parameters which enter the

problem are the Taylor number

R1]Rift1
T_= 4[R,- 2 2 ,

the Prandtl number P, = v/_¢, the ratio Ps = v/tcs, the dimensionless latent heat of Msion

£ = vgv/(kAT), the dimensionless surface energy 7 = T,,,F/([R2 - RI]AT), the ratio of

thermal conductivities q = ks�k, the radius ratio rI = RI/R2, and the dimensionless crystal

width Lc = Ls/[R2- R1].

3. Numerical Results

Our principal concern is the interpretation of recent experiments with succinonitrile (SCN)

with P_ = 22.8, for the case of a finite gap r/ < 1. For centimeter-sized systerrrs with

5
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moderate temperature differences across the melt gap, the parameter "f is very small and

can be neglected. The thermal properties of the crystal and melt are very similar for SCN,

and we will take q = 1 and Ps = 22.8. We take Lc = !; the effect of varying Lc is considered

in Ref. [22] for the narrow gap limit. We will present our numerical results in dimensionless

form, using the length scale [R2 - R1], the time scale [R2 - R1]2/v, the temperature scale

AT, and the fluid velocity scale ill[R2 - R1]. However, we will retain the previous notation

for all quantities, which will henceforth be dimensionless.

3.1. Axisymmetric modes

For axisymmetric disturbances to the two-phase system we find that, as in the rigid-walled

system, the onset of instability is stationary, with al = 0. In this case the marginal Taylor

numbers do not depend on £, Ps, or q. In Fig. 2 we show marginal stability curves for a !t _
fixed radius ratio _ = 0.5 for various values of the Prandtl number. For Pr = 0 the thermal

transport is diffusion-controlled and convection has no effect on the thermal field. The

isotherms, and hence the crystal-melt interface, are therefore cylindrical, as dictated by the

isothermal boundary conditions at r = R1 and r = R_ + L. The results for Pr = 0 therefore

are identical to the results for a rigid-walled system, with a critical Taylor number T, = 6,200

corresponding to a dimensionless wavenumber a = 3.2. As Pr increases, convective transport

of heat becomes significant, and the interface responds to the influence of the flow field, which

allows the instability to set in sooner: for Pr = 22.8, the critical disturbance has 7', = 1,060

and a = 1.7.

In Figs. 3 and 4 we show the linear eigenmodes for P_ = 0.01 and P_ = 22.8 in detail,

together with contour plots of the flow field and temperature in the melt. On the left of

each plot we show the dimensionless angular velocity of the base state fl(r) = V(°)(r)/r,

and the dimensionless eigenfunctions fi(r), _(r), and _'(r), normalized so that the maximum

value of fi is one. The contour plots show a cross-section of the melt and crystal, with the

cross-hatched region corresponding to the crystal; the plots are obtained by adding to the

base state a small multiple (0.003) of the normalized eigenmode, in order to highlight the

-6-
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interface deformation. For Pr = 0.01 with a = 3.162 the effect of the crystal-melt interfac

on the classical Taylor-vortex flow is small, and the flow consists of counter-rotating ce

of roughly unit aspect ratio. The isotherms are undisturbed by the flow, and show the

logarithmic spacing of the base state. For Pr = 22.8 with a = 1.697 (Fig. 4) the perturbed

azimuthal velocity and temperature fields are larger, and the interface and isotherms are

distorted by the flow field. The counter-rotating celts have a rectangular cross-section. The

interface melts back where the perturbed flow transports additional heat to the interface,

and protrudes into the liquid where the flow carries heat away from the interface. Note also

that _3is much larger near the interface for P, = 22.8 than it is in the rigid case for P, = 0.

In Fig. 5 we show marginal stability curves for P, = 22.8 for various values of the radius

ratio rI. As is the case for the rigid-walled system, the effect of decreasing rI from the narrow-

gap limit rI = 1 is to stabilize the system. As can be seen from Table I, the amount of t

destabilization relative to the rigid-walled system remains about the same o',er this range of

,3, amounting to a five-fold to seven-fold decrease in the critical Taylor number; the critical

wavenumber is not sensitive to _?over this range.

3.2. Non-axisymmetric modes

We next consider the behavior of non-axisymmetric disturbances with n :_ 0. For a rigid-

walled system in the narrow gap limit, the most daxzgerous mode is axisymmetric, but there

are also nearby non-axisymmetric modes at only slightly higher Taylor numbers [26]. In

contrast to the axisymmetrlc case, which has a stationary onset of instability (a, = 0), the

non.axisymmetric modes have non-zero values of ai, and the disturbar.ce propagates as

travelling wave. Thus, whereas the critical Taylor number for the axisymmetric mode is

insensitive to the latent heat in the two-phase problem, for the non-axisymmetric mode

energy must be continually supplied locally to transform crystal to melt to sustain the

progressing wave. Consequently the critical Taylor numbers for the non-axisymmetric modes

are found to depend on the value of the latent heat.

The dimensionless parameter £ = uLv/(kAT) is a measure of the amount of energy

-7-
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required to transform crystal into melt. Either a small value of the latent heat L v or a large

temperature difference AT across the melt give rise to a small value of _2, meaning that it is

relatively easy to melt the crystal. If the latent heat is large, or the temperature difference

across the melt is small, it is difficult to provide enough heat to melt the crystal. Evaluating

the material constants for SCN, the dimensionless latent heat can be written in the form

P = 557.3/AT, for AT given in Kelvins. As shown in Fig. 6 for ,7 = 0.99, for n = 1 modes

the t ,vo-phase system is least stable for £ = 0, becoming more stable with increasing £. The

marginal Taylor number for the n = 1 modes for £ = 0 is T_ = 1150, which is significantly

higher than the n = 0 value, T_ -- 670. As T_, is increased, the neutral stability curves begins

to pinch off, as shown for £ = 50, and eventually forms two branches, as shown for E = 350.

The upper of the "wo branches tends to the marginal curve corresponding to the rigid-walled

system for large values of E, and the interface deflection for the normalized eigenmode tends it

to zero as £ -1 . The interf__ce deIt_tion for modes on the lower closed loop of marginal states

tends to a non-zero limit for large _, and the product £:o'i tends to a constant. We have

not investigated further the nature of this lower branch, as in any event the most dangerous

mode for the two-phase system corresponds to an axisymmetric mode for these parameter

values.

For non-axisymmetric modes, then, the destabilizing effect of convective heat transport

to the interface at large Prandtl number can be somewhat offset by large values of £. In

Table II we compare the marginal Taylor numbers for n = 0 and n = 1 modes in the rigid-

walled system (P, = 0) and the two-phase system (P, = 22.8) for radius ratios 77near unity.

The comparison is made with £: - 0, which is the least stable case for the n = 1 mode. For

P_ = 22.8, the n - 1 mode is substantially more stable than the n = 0 mode, unlike the

rigid-walled case. The n = 1 mode is also much more stabilized for decreasing 17than are

the other modes in the systems.

-8-
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4. Discussion

The destabilization of the two-phase system relative to the rigid-walled system f_,r large

Prandtl numbers that was found for the case of a narrow gap [22] also occurs for a finite

gap system, although the relative destabilization is largest for the narrow gap case. As for

the case of a rigid-walled system, for steady rotation of the inner cylinder with a stationary

outer cylinder, the onset of instability is due to a stationary, axisymmetric mode. The non-

axisymmetric modes with azimuthal wavenamber n = 1 that are nearby the onset for the

rigid-waqed system are found to be relatively more stable for the two-phase system.

A possible extension of this work would include the effects of buoyancy-driven flow caused

by the radial temperature gradient in a vertical alignment of the system. As in the rigid-

walled case [27], a one-dimensional solution may be found for tie limiting case of an infinite

aspect ratio, and a tractable linear stability problem may be formulated, t

It is also of interest to consider the case of a time-varying torsional oscillation of the sys-

tem with zero mean oscillation, and preliminary experimental and theoretical woli_ en this

problem is in progress; the theoretical treatment is based on Floquet theory. Preliminary

experimental results for the two-phase system using succinonitriie [22] suggest an axisym-

metric mode of instability, whereas the numerical results of Carmi and Tustaniwsk3j [28] for

an oscillating rigid-walled system indicate a non-axisymmetric (n = 1) mode of instability

with nearbj axisymmtric modes that are only slightly more stable.
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: Table I. Comparison of Rigid and Two-Phase Systems

_/= 0.99 r/= 0.50 7/= 0.30 7/= 0.20
P, T, a T, a T, a Ta a

0.0 3,412.63 3.127 6,1'99.16 3.162 11,548.16 3.215'20,715.77 3.263

22.8 670.14 1.749 1,059.17 1.697 1,834.04 1.671 3,144.69 1.652

Table II. Comparison of Axisymmetric and Non-Axisymmetric Modes

7/= 0.99 7/= 0.97 r]= 0.95

Pr n=0 n=l n=0 n=l n=0 n=l It

T_ 3,412.63 3,416.93 3,459.89 3A73.51 3,509.71 "3,533.7(}
j,

0.0 a 3.127 3.128 3.127 3.131 3.127 3.135

c-; 0.0 -2.180 0.0 -3.828 0.0 -5.009

To 670.14 1,i50.46 676.07 1,692.84 682.39 2,081.0'6 !
22.8 a 1.749 2.322 1.747 2.636 1.746 2.787

a_ 0.0 -0.398 0.0 -0.819 0.0 -1.236
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i Figure Captions

Figure 1. Schematic of the case of a stationary crystalline annulus (c) surrounding an

annular melt (2) in contact with an inner cylinder rotating at angular ve!ocity ftl.

Figure 2. Marginal Taylor numbers versus the axial wavenumber a for axisymmetric modes

with Prandtl numbers Pr = 0.0, 5.0, 22.8, and 100.0.

Figure 3. The linear eigenmode for P, = 0.01 and r/= 0.5 ft(v), fi(v), 6(r), and T(r) are

the dimensionless angular velocity of the base state, the radial part of the perturbed dimen-

sionless radial velocity, the radial part of the perturbed dimensionless azimuthal velocity,

and the radial part of the perturbed dimensionless temperature in the melt, respectively.

Streamlines of the flow are shown in the contour plot in the middle, with the cross-hatched

region corresponding to the crystal. Isotherms are shown in the contour plot on the right.

Figure 4. The linear eigenmode for Pr = 22.8 and rj = 0.5. As in Figure 3, in the contour

plots the linear perturbation, normalized so that max{fi(v)} = 1, is added to the base state

with an amplitude of 0.003 to show the interface deformation.

Figure 5. Marginal Taylor numbers for axisymmetric modes with P, = 22.8, versus the

axial wavenumber a for radius ratios _ = R1/R.2 of 8.990, 0.50, 0.30, and 0.20.

Figure 6. Marginal Taylor numbers for non-axisymmetric modes, versus the axial wavenum-

bet a for values of the dimensionless latent heat £ = 0, 50, and 350. There are two branches

of the marginal stability curve for £ = 350; the upper branch is nearly identical to that for

the rigid-walled sysl "_m.
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